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antiferromagnetic Ising models: a renormalisation 
group approach 
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Istituto di Fisica Teorica, Mostra d’oltremare, pad. 19-80125 Napoli, Italy 

Received 2 February 1981 

Abstract. The Migdal-Kadanoff infinitesimal renormalisation group is employed to study 
the site bond correlated percolation problem, in a ferromagnetic and antiferromagnetic 
lattice gas. The general phase diagram shows that percolation is favoured by ferromagnetic 
interaction, while inhibited by antiferromagnetic interaction. Moreover, the lattice gas 
critical point is never a percolation point in the antiferromagnetic case, while it is a 
percolation point in the ferromagnetic case for a particular range of bond probability p ~ .  

1. Introduction 

The concept of clusters has been widely used in many fields of physics particularly in 
connection with critical phenomena (Binder 1976). In the site percolation problem the 
clusters are defined as the maximal set of nearest neighbour particles distributed on a 
lattice. In standard percolation the particles are randomly distributed while in cor- 
related percolation they interact (see the review articles by Stauffer (1979) and Essam 
(1980)). The case in which the particles are correlated with ferromagnetic interaction is 
the most studied, for example, the lattice gas or Ising model. More recently a 
generalisation of this problem has been proposed: the site bond correlated percolation 
problem in which the clusters in a lattice gas are defined as the maximal sets of nearest 
neighbour particles connected by active bonds. The probability of a bond being active is 
p B  and non-active 1 -pB. This model has been useful for describing the effect of bad 
solvent in gelation (Coniglio et a1 1979). It also provides a useful description for the 
droplets in the lattice gas or Ising model (Coniglio and Klein 1980). Very little attention 
has been devoted to the correlated percolation problem in which the correlation is 
antiferromagnetic (Stoll and Domb 1979, Murata 1979, Napiorkowski and Hemmer 
1980). In this paper we want to study the site bond correlated percolation problem for 
both ferromagnetic and antiferromagnetic interactions on the square lattice. We follow 
closely the formalism developed by Coniglio and Klein for the ferromagnetic site bond 
correlated percolation. They use a Hamiltonian formalism to which they apply the 
finite Migdal-Kadanoff renormalisation group (MKRG) (Migdal 1976, Kadanoff 1976). 
Since the finite renormalisation group employed is not suitable for treating the 
antiferromagnetic case, we have used the infinitesimal renormalisation group which 
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gives better results for the ferromagnetic case and is also suitable for describing the 
antiferromagnetic case. In 8 2 we briefly review the properties of the lattice gas Q-state 
Potts model and show that in the Q = 1 limit it gives the site bond correlated percolation 
problem, In 5 4 we apply the infinitesimal MKRG to both the ferromagnetic and 
antiferromagnetic case and draw the conclusions. In the appendix details of the MKRG 

are reported. 

2. Site bond correlated percolation as Q = 1 limit of the Q-state lattice gas Potts 
model 

Consider the lattice gas Hamiltonian -p%LG on a regular lattice of N sites 

1 

where n, = 1 if site i is occupied, 0 otherwise. P = l /KST, K is the nearest neighbour 
coupling constant related to the Ising coupling constant KI by Kr = aK, A is the chemical 
potential related to the Ising magnetic field H and the coordination number c by 
H = ;(A - &K).  The sum is over nearest neighbours. Positive and negative values of K 
correspond to ferromagnetic and antiferromagnetic interactions, respectively. In site 
bond correlated percolation a cluster is defined as the maximal set of nearest neighbour 
particles connected by active bonds. The probability of a bond being active is pB and 
non-active 1 -pB. The bonds are only introduced to define the connectivity between 
two nearest neighbour particles and do not affect their interacting energy and, there- 
fore, the particle distribution. Every particle configuration {ni}  is weighted by the 
Boltzmann factor exp(-P%LG). 

The quantities of interest are: the average number of clusters of s particles per site 
(n,), the average number of clusters per site 

( ~ ~ 1 )  = C b,), 

the percolation probability 

S 

P = 1 -Z’s(ns)p-’ 

( p  is the density of particles), the mean cluster size 

s = (X’s2(ns))(Z’sns)-’, (4) 

the pair connectedness function 

( 5 )  r. .  = ( y . . )  
11 11 

where yii is 1 if sites i and j belong to the same finite cluster, 0 otherwise. Z’ is the sum 
over all finite clusters. 

Here the brackets (. . .) stand for the average over the sites and bonds 

where E{ni} is the set of all bonds in the sublattice made of the occupied sites in the 
configuration {ni}. C is a subset of E{ni} and D = E{ni} - C; /Cl and DJ are the number 
of bonds respectively in the subsets C and D. Note that &c~lni) pB IC, 11 -pBjiDi = 1 for 
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every configuration {ai}. It is well known (Kastelyn and Fortuin 1969) that the random 
bond percolation problem can be obtained from the Q-state Potts model in the Q = 1 
limit. 

Analogously the site bond correlated percolation can be obtained from the lattice 
gas Potts model in the Q = 1 limit (Murata 1979, Coniglio and Klein 1980). For 
convenience we give the derivation here. We start from the lattice gas Q-state Potts 
model -pX 

-pZ = J 1 (amiv, - 1)ninj + h 1 (aUii - l )n j  - P Z i . G  (7)  
( i i )  I 

where vi = 1 . . . Q are the Q-state Potts variables. ni are the lattice gas variables and 
pXLG is the lattice gas Hamiltonian defined in (1). Hamiltonian (7) has recently 
received considerable attention (Nienhuis et a1 1979) due to the role played by the 
vacancies in a real space renormalisation group of the Q-state Potts model. Starting 
from (7) we can write the partition function Z in the following way 

where 

where 

is the partition function of the Q-state Potts model defined on the sublattice made of the 
occupied sites in the configuration {ni} .  O{ni} is the set of vertices in this sublattice and 
E{ni} the set of bonds; q = e-J, p = 1-4. In (10) the term QLc( l -n i )  is due to the trace 
over all the unoccupied sites where ni = 0. Following the usual procedure as for the 
regular lattice (Wu 1978, Murata 1979) 

where r labels the clusters in configuration C, sr is the nuhber of sites in the rth cluster 
and the product is over all the clusters in the configuration C. Equations (10) and (12) in 
the Q = 1 limit give rise to the same probability distribution as in (6) provided that 
p B = p = l - e  . -J 

Let us define the 'free energy' F in the following way 

F =  lim - - 1 n ~ ]  1 d  
~ - t m  [ N  dQ Q=l 

From equation (12) we have 
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which are related to equations (2), (3)  and (4). 

geneous fields hi at each site i 
Analogously the pair connectedness 7rij can be obtained by introducing inhomo- 

3. Ising clusters and critical droplets 

In the previous section we have shown that all the connectivity properties can be 
obtained from the lattice gas Q-state Potts model (7) in the Q, = 1 limit. 

We shall show now how Hamiltonian (7) is equivalent to an asymmetric (Q + 1)- 
state Potts model (Berker et a1 1978). 

Define a new (Q+ 1)-valued variable bi related to the (CT, n )  variables by the 
following transformations 

l . . . Q  if ni = 1 andm = 1 . .  . Q 
if ni = 0. bi=I0  

In terms of this new variable Hamiltonian (7) with zero ghost field h = 0 can be written 

and the partition function 2 can be expressed as 

2 = 1 exp(-PX{ni, ai}) 
{ni,uz) 

The term exp(1n Q XI 8b,O) comes from the trace over all the C T ~  variables at the sites 
where n, = 0. In conclusion Hamiltonian (7) with h = 0 written in terms of the new 
variables {b,} is equivalent to the following asymmetric (Q + 1)-state Potts model: 

(I 

-@X{bz}=JC (8bZb,-1)-2(J-!iK!e sb,OSb&l 
11 I1 

+[2H $. c ( J  - 3K) + In Q] 1 Sb,O (20) 
I 

where the Ising external field H = i (A- iCK)  has been used. Therefore the site bond 
correlated percolation problem is obtained from the Hamiltonian (20) in the Q = 1 
limit. In this limit Hamiltonian (20) will tend to a two-state asymmetric Potts model, 

Let us remember that K is the lattice gas coupling constant and J is related to the 
bond probability pB = 1 -e-". For J = $K i.e. 

(21) pB = 1 - e-K/2 

Hamiltonian (20) in the Q = 1 limit becomes a symmetric two-state Potts model with 
coupling constant $K, which is equivalent to a lattice gas with constant K, 
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Therefore the free energy has the usual lattice gas singularity at the critical point 

In conclusion this argument shows that in a lattice gas or Ising model the clusters 
made of nearest neighbour particles connected by active bonds with probability given 
by equation (21) diverge at the Ising critical point with Ising exponents. Namely the 
linear dimension 5, diverges with the king correlation exponent Y and the mean cluster 
size S with the Ising susceptibility exponent y (Coniglio and Klein 1980) as in Fisher’s 
(1967) droplet model. These new clusters will be called ‘Ising droplets’. A Monte Carlo 
study of these droplets has been recently done by Stauffer (1981). 

The importance of this definition lies in the fact that the usual clusters made of 
nearest neighbour particles, which we shall call ‘Ising clusters’, diverge in dimension 
higher than two at the wrong temperature (Miiller-Krumbhaar 1974) while in two 
dimensions the Ising clusters diverge at the Ising critical temperature (Coniglio et a1 
1977) but the mean cluster size exponent is larger than the Ising susceptibility (Sykes 
and Gaunt 1976, Coniglio and Klein 1980). 

We note that for the antiferromagnetic case, the asymmetric term in (20 )  can never 
vanish since J > 0 (pB > 0). This suggests that the clusters made of nearest neighbour 
particles connected by bonds can never describe droplets in an antiferromagnetic lattice 
gas. We suggest that a cluster of holes and particles with antiferromagnetic order would 
be suitable as a definition of droplet. 

H = 0 ,  K=&. 

4. Infinitesimal MKRG for ferromagnetic and antiferromagnetic lattice gas Potts 
model 

Hamiltonian (7) has been studied extensively in the ferromagnetic case K > 0 (Berker et 
a1 1978) using the Migdal-Kadanoff renormalisation group. Since this group is not 
suitable for treating the antiferromagnetic case, we have employed the infinitesimal 
MKRG which gives better results for the ferromagnetic case and is also suitable for 
describing the antiferromagnetic case. 

In the appendix we give a general outline of MKRG. This method applied to the 
lattice gas Potts model (7), in the Q = 1 limit, for the ghost field h = 0 and for the 
ferromagnetic case gives the following recursion relations (cf Coniglio and Zia unpub- 
lished) 

y l =  & 2 -  a*) ( 2 2 ~ )  

W I  = (a + P ) I ( P  - a )  (22b)  

K -H J K ’  w h e r e y = e  , w = e  , x = e , y ’ = e  , ~ ‘ = e - ~ ’ , x ’ = e ~ ’ a n d  

G + l  
G-1  

a=- W b - l  b / 2  p = m -  b / 2  Y 
W 

1 
y =  ( 2-77?  x:- w w: Jb[ l  + RIb + [l- RIb 
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R = J ( w  - 1)2 + 4w by-6/w + 1. 

In the antiferromagnetic case K < 0 we have 1 - R < 0 and d < 0; therefore 

(1 -R )b  = (-l)bll -RIb and Gb =(-l)bidlb (23)  

for any integer value of b. 
To continue to values of b infinitesimally near to 1, we replace relation (23)  by 

(1 - R ) b  = COS bVl1- R I b  and Gb =cos brrldIb. 
We remark here that the renormalisation equations for y and w are decoupled from the 
x equation. 

For b infinitesimally near to 1 the fixed points of relations (22)  are given by solving 
the equations 

and the scaling powers are obtained by solving the secular equation 

= 0 ;  

the zero elements are due to the decoupling of equations (22).  

4.1. Ferromagnetic case 

Equations (22a)  and (22b)  give the following fixed point 

w = l i . e . H = ( A - & K ) = O  

y = (J?+ i.e. Kc  = 4 KoNs 

where 

KoNs = In (&+ 1) = 0.44069 

and the trivial ones 

w = l  y = 0 O  H=O K=CO 

w = l  y = l  i.e. H=O K=O 

w=CO y = l  H=-CO K = 0 .  

At  the Onsager fixed point we obtain the following scaling powers 

y K  = 0.75 Y H  = 1.88. 

The fixed point and flow lines for equations (22)  are shown in figure 2. The fixed point 
H = -00, K = 0, J 1  = 0.693 (i.e. pB = 1) corresponds to pure bond percolation; this point 
determines the singular behaviour for all transitions which do not take place at the Ising 
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Figure 1. Occupied sites are  denoted by dots and bonds by wavy lines. The configuration in 
this figure contains four two-site clusters and one one-site cluster. 

Figure 2. Schematic representation of the flow lines generated by the recursion relations of 
equations (22). 

critical point K -- KC, H = 0. The scaling pcwers at this fixed point are y J  = 0.61 while 
y K  and y H  are negative this implies a connectedness length exponent v p  = y;' = 1.63. 

Let us consider the fixed points. H = 0, K = Kc: on this line there are three fixed 
points: J2 = 0, J3 = $.KC = 2KoNs = 0.88137, J4 = 3.3068. The fixed point J4 is stable in 
the J direction. The scaling powers at J3 and J4 are respectively y J  = 0.50, y J  = -1.43. 
All these fixed points are characterised by the Ising scaling fields K -Kc and H with the 
relative scaling powers Y K  = 0.75, Y H  = 1.88. At the J2 fixed point we find yJ  < 0. 
Therefore the only relevant scaling fields are K - Kc and H. This fixed point describes 
the usual thermal Ising transition. At the fixed point J3 we find y J  = 0.50. This is the 
most unstable fixed point and describes the critical behaviour of the Ising droplets, 
which diverge with Ising exponents (Coniglio and Klein 1980). 

Finally at the J4 fixed point we find Y J  < 0. This point is stable with respect to J. It 
describes percolation at the Ising critical point with 1 - <pB s 1, In particular it 
describes the critical behaviour of the Ising cluster made of nearest neighbour particles 
(pB = 1). Here the connectedness length 5~ = ( K  -Kc)-', where v = YL', has the same 
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singularity of the Ising correlation length exponent while the mean cluster size diverges 
with an exponent larger than the susceptibility (Sykes and Gaunt 1976, Coniglio and 
Klein 1980). 

This behaviour is due to the sum of two contributions: one is due to geometrical 
effects, the other to correlations. Moreover, by looking at the flow lines we have been 
able to locate the critical lines of percolation points. In figure 3 are shown the critical 
lines of percolation points in the (H, T )  plane for different values of pB = 1 - e-J. Each 
critical line in the (H, T )  plane separates a percolating region (above the critical line), 
where pB renormalises successively to 1, from a non-percolating region (below the 
critical line) where pB renormalises successively to zero. 

In figure 3 are plotted the critical lines for two values of pB. Smaller values of pB 
delimit smaller percolative regions. 

1 / K  

Figure 3. Percolation lines for different values of p~ in the ferromagnetic case. These lines 
end at the Ising critical point H / K  = 0, K-’ = KG1 for values of pe satisfying the inequality 
1 <pe < 1 - e-Kc’2, 

4.2. Antiferromagnetic case 

As for the ferromagnetic case the recursion relations equations (22)  for K and H are 
separated from J. 

Equations ( 2 2 a )  and (22b)  together with (23)  give the antiferromagnetic Ising fixed 
point H = 0, K = -KC with the scaling power y K  = 0.75, Y H  = 0.118. Moreover there is 
also another spurious fixed point near H = 0 which is due to the Migdal approximation 
(figure 4). 

This spurious fixed point however does not affect the qualitative behaviour of the 
percolation line. In the plane (H, T ) ,  by looking at flow lines we find the antifer- 
romagnetic Ising phase boundary (figure 4 )  in agreement with other results (di Liberto 
1973, Racz 1980). The percolation properties are obtained from the overall study of 
equations (22).  We find only one percolation fixed point H = -CO, K = 0, J = J1 which 
coincides with the random bond percolation fixed point already found in the ferro- 
magnetic case. 

This fixed point describes all the percolative transitions which occur in the (H, T )  
plane. The critical percolation lines are plotted in figure 5 for different values of pB. All 
of them converge to the top of the phase boundary. This is rather intuitive, in fact at 
T = 0 (1/K = 0) for H/K < 1 the ground state is ordered antiferromagnetically, which 
for the square lattice does not give any percolation. For H / K  > 1 the ground state is 
ordered ferromagnetically which always gives percolation for all the values of pB > pc, 
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1IIKI 

Figure 4. Antiferromagnetic phase boundary in the infinitesimal Migdal-Kadanoff renor- 
malisation group’approximation. Note that at T=O (1/K = 0) and T = Tc (K = Kc) this 
approximation reproduces exact results. The dot on the phase boundary is a spurious fixed 
point due to the MK approximation. 

\ I I 1 

1 2 3 0 5 6  

1 IlKI 

Figure 5. Antiferromagnetic phase boundary and the percolation lines for different values 
of p ~ .  All these lines end at the value H/ K = 1. 

where pc is the random bond percolation threshold. Of course for p~ < p c  no percola- 
tion is allowed in the (H, T )  plane. 

Finally in figure 6 we give in the (HI K) plane an overall picture of the percolation 
line for both ferromagnetic and antiferromagnetic interactions. 

In conclusion we have used a Hamiltonian formalism previously introduced to study 
site bond percolation with ferromagnetic correlation. The infinitesimal Migdal- 
Kadanoff renormalisation group has been employed to include also the antifer- 
romagnetic interactions. This model might be of relevance in studying effects of solvent 
in polyfunctional condensation. 

While in the ferromagnetic case for a range of values of pB the cluster diverges at the 
Ising critical point, this never occurs in the antiferromagnetic case. 

In order to define a droplet which diverges at the thermal critical point with the right 
exponent, as in the ferromagnetic case, one should define a cluster of particles and holes 
with ferromagnetic order. This problem is under investigation. 
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I 

I 

I 

K 

Figure 6.  Antiferromagnetic phase boundary and the overall picture of the percolation line 
at p~ = 1 for negative and positive K, in the (H,  K )  plane. The percolation line is a 
monotonic increasing function of K. 
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Appendix 

Here for convenience we give an outline of the standard MK renormalisation procedure 
for a general Hamiltonian 

-P% = C %ip(Fi, F j )  
( U )  

where pi is a variable on site i which can assume t values and the sum is over all nearest 
neighbours on the square lattice made of 1 VI sites. The partition function is 

where 

T h i ,  w j )  = exp(%(w, gj))  

and the sum is over all the configurations {p}" on the lattice V. The MK transformation 
can be done in many ways which will give the same results in the infinitesimal limit 
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(Nicoll 1979). We follow the procedure made of two steps schematically shown in 
figure 7 for b, the length rescaling factor, equal to 3.  

Let V3 denote the set of isolated vertices as shown in figure 7 ( b )  and V2 the set of 
vertices that are nearest neighbours of some vertex in V3. Obviously V = V3 U V2 U V1 
where VI are the vertices in figure 7 ( c ) .  

r1 
- 1  

In1 I b )  L-1 I C )  

Figure 7. Successive steps of the Migdal-Kadanoff renormalisation group on the square 
lattice. (i) Bond moving ( U ) - +  ( b ) ,  (ii) dedecoration ( b ) +  (c), 

(i) In the bond moving figure 7 ( a ) + 7 ( b )  one requires that the overall energy is 
unchanged and that the interactions are only along the perimeter. The partition 
function is thus 

this can also be written 

where h l  . . . h b  is the sequence of sites connecting two nearest neighbour sites in VI. 
(ii) In the dedecoration transformation figure 7 ( b )  + 7 ( c )  one eliminates the 

dependence on the sites Vz by summing in the partition function over the variables in 
V2;  therefore we have 

c n TL.&l') z = tl"3l 
{ / - L ) V ~  i i E V 1  

where 

The left-hand side can be considered as the elements of a matrix T' and the 
right-hand side as the elements of a product b times of a matrix T whose elements are 
given by T~LLi,/-Ll).  Therefore symbolically equation (Al) can be written as 

A s  an example, for the lattice gas Hamiltonian 
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equation (A2) becomes 

exp(Kf-2A’/C+ wb) exp(-A’/C+ wb) exp[b(K-2A/C)] 
( exp(-A’/C + wl,) exp(wb) ) = ( exp(-bA/C) 1 

where wl, is a constant. Diagonalising the above matrices we obtain the renor- 
malisation equations (22a) and (22b). 

Note that in (A3) the linear term has been treated as a bond. 
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